Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 529
Filtrar
1.
Viruses ; 15(2)2023 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-36851559

RESUMO

Papillomaviruses (PVs) are a family of small DNA tumor viruses that can induce benign lesions or cancer in vertebrates. The observation that animal PV capsid-proteins spontaneously self-assemble to empty, highly immunogenic virus-like particles (VLPs) has led to the establishment of vaccines that efficiently protect humans from specific PV infections and associated diseases. We provide an overview of PV-induced tumors in horses and other equids, discuss possible routes of PV transmission in equid species, and present recent developments aiming at introducing the PV VLP-based vaccine technology into equine medicine.


Assuntos
Proteínas do Capsídeo , Doenças dos Cavalos , Papillomaviridae , Infecções por Papillomavirus , Vacinas de Partículas Semelhantes a Vírus , Animais , Capsídeo , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/imunologia , Cavalos , Papillomaviridae/genética , Infecções por Papillomavirus/prevenção & controle , Infecções por Papillomavirus/transmissão , Doenças dos Cavalos/prevenção & controle , Doenças dos Cavalos/transmissão , Doenças dos Cavalos/virologia
2.
Parasitol Res ; 121(9): 2601-2613, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35788769

RESUMO

The aim of this study was to identify the aggregation sites and transmission characteristics of Gasterophilus pecorum, the dominant pathogen of endangered equines in desert steppe. Therefore, we tested with a four-arm olfactometer the olfactory response of the G. pecorum adults to the odors that have a great impact on their life cycle, and also investigated the occurrence sites of the adults in the area where the Przewalski's horse (Equus przewalskii) roam frequently during the peak period of G. pecorum infection. The results of four-directional olfactory test showed that the fresh horse feces had a stronger attraction rate on both male (50.4%) and female flies (38.2%). Stipa caucasica, the only oviposition plant where G. pecorum lay eggs, had a better attraction effect on females than that on males. And the attraction rates of S. caucasica to G. pecorum females in the early growth stage (Stipa I) and mid-growth stage (Stipa II) were 32.8% and 36.8%, respectively. In addition, the two-directional olfactory test showed that the attraction rate of males to fresh horse feces (68.90%) was higher than that to Stipa II (31.10%), and females also showed similar olfactory responses. Moreover, in our field investigation, 68.29% of G. pecorum adults were collected from around the horse feces. The results of laboratory test and field investigation implied that the location mechanism of G. pecorum aggregation for mating is related to the orientation of horse feces. The horse feces and the vicinity are the key contamination areas of G. pecorum, and it is also the areas where horses are seriously infected with G. pecorum. Those fresh feces, which gather abundant information about the host, naturally had the greatest chance of contacting with the host; G. pecorum adults create the opportunity to enter directly into the host's mouth and infect the host by laying eggs on S. caucasica, which is the most favorite plant of the host in this area. These characteristics are one of the main reasons why G. pecorum has become the dominant species under the condition of sparse vegetation in desert steppe.


Assuntos
Dípteros/fisiologia , Fezes/química , Doenças dos Cavalos/parasitologia , Doenças dos Cavalos/transmissão , Enteropatias Parasitárias/transmissão , Animais , Clima Desértico , Espécies em Perigo de Extinção , Fezes/parasitologia , Feminino , Cavalos , Enteropatias Parasitárias/parasitologia , Masculino , Parasitos/crescimento & desenvolvimento , Parasitos/isolamento & purificação , Desenvolvimento Vegetal , Plantas
4.
J Med Entomol ; 59(1): 1-13, 2022 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-34734628

RESUMO

In the current review, we examine the regional history, ecology, and epidemiology of eastern equine encephalitis virus (EEEV) to investigate the major drivers of disease outbreaks in the northeastern United States. EEEV was first recognized as a public health threat during an outbreak in eastern Massachusetts in 1938, but historical evidence for equine epizootics date back to the 1800s. Since then, sporadic disease outbreaks have reoccurred in the Northeast with increasing frequency and northward expansion of human cases during the last 20 yr. Culiseta melanura (Coquillett) (Diptera: Culicidae) serves as the main enzootic vector that drives EEEV transmission among wild birds, but this mosquito species will occasionally feed on mammals. Several species have been implicated as bridge vectors to horses and humans, with Coquilletstidia perturbans (Walker) as a leading suspect based on its opportunistic feeding behavior, vector competence, and high infection rates during recent disease outbreaks. A diversity of bird species are reservoir competent, exposed to EEEV, and serve as hosts for Cs. melanura, with a few species, including the wood thrush (Hlocichia mustelina) and the American robin (Turdus migratorius), contributing disproportionately to virus transmission based on available evidence. The major factors responsible for the sustained resurgence of EEEV are considered and may be linked to regional landscape and climate changes that support higher mosquito densities and more intense virus transmission.


Assuntos
Aves/virologia , Reservatórios de Doenças/virologia , Vírus da Encefalite Equina do Leste/fisiologia , Encefalomielite Equina , Doenças dos Cavalos , Mosquitos Vetores , Animais , Encefalomielite Equina/epidemiologia , Encefalomielite Equina/transmissão , Encefalomielite Equina/veterinária , Encefalomielite Equina/virologia , Doenças dos Cavalos/epidemiologia , Doenças dos Cavalos/transmissão , Doenças dos Cavalos/virologia , Cavalos , Humanos , Mid-Atlantic Region/epidemiologia , New England/epidemiologia
5.
J Med Entomol ; 59(1): 41-48, 2022 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-34734635

RESUMO

Eastern equine encephalitis virus (EEEV; family Togaviridae, genus Alphavirus) is a mosquito-borne pathogen found in eastern North America that causes severe disease in humans and horses. The mosquito Culiseta melanura (Coquillett) (Diptera: Culicidae) is the primary enzootic vector of EEEV throughout eastern North America while several mosquito species belonging to diverse genera serve as bridge vectors. The ecology of EEEV differs between northern and southern foci, with respect to phenology of outbreaks, important vertebrate hosts, and bridge vector species. Active transmission is limited to roughly half of the year in northern foci (New York, New Hampshire, Massachusetts, Connecticut), while year-round transmission occurs in the southeastern region (particularly Florida). Multiple phylogenetic analyses indicate that EEEV strains circulating in northern foci are likely transported from southern foci by migrating birds. Bird species that overwinter or migrate through Florida, are bitten by Cs. melanura in late spring, and arrive at northern breeding grounds in May are the most likely candidates to disperse EEEV northward. Available data indicate that common yellowthroat and green heron satisfy these criteria and could serve as virus dispersers. Understanding the factors that drive the phenology of Cs. melanura reproduction in the south and the timing of avian migration from southern foci could provide insight into how confluence of these biological phenomena shapes outbreaks of EEE throughout its range. This information could be used to develop models predicting the likelihood of outbreaks in a given year, allowing vector control districts to more efficiently marshal resources necessary to protect their stakeholders.


Assuntos
Vírus da Encefalite Equina do Leste , Encefalomielite Equina , Doenças dos Cavalos , Mosquitos Vetores , Animais , Vírus da Encefalite Equina do Leste/fisiologia , Encefalomielite Equina/epidemiologia , Encefalomielite Equina/transmissão , Encefalomielite Equina/veterinária , Encefalomielite Equina/virologia , Doenças dos Cavalos/epidemiologia , Doenças dos Cavalos/transmissão , Doenças dos Cavalos/virologia , Cavalos , Sudeste dos Estados Unidos/epidemiologia , Tennessee
6.
J Med Entomol ; 59(1): 27-40, 2022 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-34734638

RESUMO

Eastern equine encephalomyelitis (EEE) is a mosquito-borne viral disease that is an emerging public health concern in the state of Michigan. Although Michigan has one of the highest incidence rates of EEE in the United States, much of the information known about cases in humans, equines, and other animals residing in Michigan is unpublished. This article summarizes such information and explores spatial trends in the historic distribution of EEE in Michigan. Outbreaks in Michigan have occurred over an 80-yr interval, involving only horses in 1942-1943 and 1973-1976, and then episodically from 1980 to 2020, and involving horses, humans, and wild and domestic animals. An estimated 1,036 equine cases (confirmed and suspected) and 36 confirmed human cases have occurred, including 10 in 2019 (6 deaths) and 4 in 2020 (2 deaths). Human cases ranged in age from 1 to 81 yr; 70% were male, and fatality rate of 34.3%. Equine and human cases occurred from July to October, peaked in August, and cluster in space in southwestern and southeastern lower Michigan. Cases occurred in glacial outwash and ice-contact landscapes in glacial interlobate zones. EEE virus (EEEV) was recovered from Culiseta melanura, Coquillettidia perturbans, five species of Aedes, and other mosquito species near horse and human case sites. Virus isolations or presence of neutralizing antibodies in several passerine species of birds suggest broad EEEV-bird associations. White-tailed deer and other wildlife were also affected. Geographic spread to northern areas of the state suggests expansion of this disease system into new and unsuspected foci.


Assuntos
Encefalomielite Equina do Leste , Doenças Endêmicas , Doenças dos Cavalos , Mosquitos Vetores , Animais , Animais Selvagens , Cervos , Encefalomielite Equina do Leste/epidemiologia , Encefalomielite Equina do Leste/transmissão , Encefalomielite Equina do Leste/veterinária , Encefalomielite Equina do Leste/virologia , Doenças Endêmicas/estatística & dados numéricos , Doenças Endêmicas/veterinária , Doenças dos Cavalos/epidemiologia , Doenças dos Cavalos/transmissão , Doenças dos Cavalos/virologia , Cavalos , Humanos , Michigan/epidemiologia
7.
Braz J Biol ; 83: e246591, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34468519

RESUMO

There are different opinions around the World regarding the zoonotic capability of H3N8 equine influenza viruses. In this report, we have tried to summarize the findings of different research and review articles from Chinese, English, and Mongolian Scientific Literature reporting the evidence for equine influenza virus infections in human beings. Different search engines i.e. CNKI, PubMed, ProQuest, Chongqing Database, Mongol Med, and Web of Knowledge yielded 926 articles, of which 32 articles met the inclusion criteria for this review. Analyzing the epidemiological and Phylogenetic data from these articles, we found a considerable experimental and observational evidence of H3N8 equine influenza viruses infecting human being in different parts of the World in the past. Recently published articles from Pakistan and China have highlighted the emerging threat and capability of equine influenza viruses for an epidemic in human beings in future. In this review article we have summarized the salient scientific reports published on the epidemiology of equine influenza viruses and their zoonotic aspect. Additionally, several recent developments in the start of 21st century, including the transmission and establishment of equine influenza viruses in different animal species i.e. camels and dogs, and presumed encephalopathy associated to influenza viruses in horses, have documented the unpredictable nature of equine influenza viruses. In sum up, several reports has highlighted the unpredictable nature of H3N8 EIVs highlighting the need of continuous surveillance for H3N8 in equines and humans in contact with them for novel and threatening mutations.


Assuntos
Doenças dos Cavalos/epidemiologia , Vírus da Influenza A Subtipo H3N8 , Infecções por Orthomyxoviridae , Animais , China , Doenças dos Cavalos/transmissão , Cavalos , Humanos , Vírus da Influenza A Subtipo H3N8/genética , Infecções por Orthomyxoviridae/epidemiologia , Infecções por Orthomyxoviridae/transmissão , Infecções por Orthomyxoviridae/veterinária , Paquistão , Filogenia , Zoonoses
8.
Infect Genet Evol ; 93: 104975, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34175479

RESUMO

Non-primate hepacivirus (NPHV) is a homolog of hepatitis C virus and has been isolated from dogs and horses. Data on NPHV prevalence and distribution are not complete, and there is a particular lack of reports from the African continent. The present study represents the first investigation of NPHV prevalence in horses and dogs in North Africa. Blood was collected from 172 horses and 36 dogs at different locations in Morocco, and screened for NPHV RNA using nested PCR targeting 5'UTR and NS3 regions and analyzed for anti-NPHV NS3 antibody using a Gaussia luciferase immunoprecipitation system-to determine seroprevalence. Eight sequences of the NS3 region isolated from positive serum samples were targeted for phylogenetic analysis. Horses and dogs showed respective NPHV RNA positivity rates of 10.5% and 5.5%, and seroprevalences of 65.7% and 8.33%. Juvenile horses appeared more susceptible to infection, with a 23.5% NHPV RNA positivity rate. Seropositivity was more extensive in mares than stallions (77.14% vs. 46.27%, p < 0.0001). Phylogenetically, that NPHV NS3 genes isolated from horses and dog are clustered together. The NPHV strains we detected showed no correlation with geographic location within Morocco. In conclusion, Moroccan horses showed much evidence of previous and/or current NPHV infection, with young age and female sex as noted potential risk factors. Interestingly, NPHV is circulating in dogs as well as horses, suggesting that it has crossed species barriers and that horses and dogs are potential vectors by which an ancestor to hepatitis C virus was transmitted into human populations.


Assuntos
Doenças do Cão/epidemiologia , Hepacivirus/fisiologia , Hepatite C/veterinária , Doenças dos Cavalos/epidemiologia , Animais , Doenças do Cão/transmissão , Doenças do Cão/virologia , Cães , Feminino , Hepacivirus/classificação , Hepacivirus/genética , Hepatite C/epidemiologia , Hepatite C/transmissão , Hepatite C/virologia , Doenças dos Cavalos/transmissão , Doenças dos Cavalos/virologia , Cavalos , Masculino , Marrocos/epidemiologia , Filogenia , Prevalência , Estudos Soroepidemiológicos
9.
Parasit Vectors ; 14(1): 243, 2021 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-33962673

RESUMO

BACKGROUND: West Nile (WNV) and Usutu (USUV) are emerging vector-borne zoonotic flaviviruses. They are antigenically very similar, sharing the same life cycle with birds as amplification host, Culicidae as vector, and man/horse as dead-end host. They can co-circulate in an overlapping geographic range. In Europe, surveillance plans annually detect several outbreaks. METHODS: In Italy, a WNV/USUV surveillance plan is in place through passive and active surveillance. After a 2018 WNV outbreak, a reinforced integrated risk-based surveillance was performed in four municipalities through clinical and serological surveillance in horses, Culicidae catches, and testing on human blood-based products for transfusion. RESULTS: Eight WNV cases in eight equine holdings were detected. Twenty-three mosquitoe catches were performed and 2367 specimens of Culex pipiens caught; 17 pools were USUV positive. A total of 8889 human blood donations were tested, and two asymptomatic donors were USUV positive. CONCLUSIONS: Different surveillance components simultaneously detected WNV only in horses and USUV only in humans and mosquitoes. While in endemic areas (i.e. northern Italy) entomological surveillance is successfully used as an early detection warning, this method in central Italy seems ineffective. To achieve a high level of sensitivity, the entomological trapping effort should probably exceed a reasonable balance between cost and performance. Besides, WNV/USUV early detection can be addressed by horses and birds. Further research is needed to adapt the surveillance components in different epidemiological contexts.


Assuntos
Culex/virologia , Infecções por Flavivirus/veterinária , Infecções por Flavivirus/virologia , Flavivirus/isolamento & purificação , Mosquitos Vetores/virologia , Febre do Nilo Ocidental/veterinária , Febre do Nilo Ocidental/virologia , Vírus do Nilo Ocidental/isolamento & purificação , Animais , Culex/fisiologia , Monitoramento Epidemiológico , Flavivirus/classificação , Flavivirus/genética , Infecções por Flavivirus/epidemiologia , Infecções por Flavivirus/transmissão , Doenças dos Cavalos/epidemiologia , Doenças dos Cavalos/transmissão , Doenças dos Cavalos/virologia , Cavalos , Humanos , Itália/epidemiologia , Mosquitos Vetores/fisiologia , Febre do Nilo Ocidental/epidemiologia , Febre do Nilo Ocidental/transmissão , Vírus do Nilo Ocidental/classificação , Vírus do Nilo Ocidental/genética
10.
Microb Genom ; 7(3)2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33684029

RESUMO

The equine disease strangles, which is characterized by the formation of abscesses in the lymph nodes of the head and neck, is one of the most frequently diagnosed infectious diseases of horses around the world. The causal agent, Streptococcus equi subspecies equi, establishes a persistent infection in approximately 10 % of animals that recover from the acute disease. Such 'carrier' animals appear healthy and are rarely identified during routine veterinary examinations pre-purchase or transit, but can transmit S. equi to naïve animals initiating new episodes of disease. Here, we report the analysis and visualization of phylogenomic and epidemiological data for 670 isolates of S. equi recovered from 19 different countries using a new core-genome multilocus sequence typing (cgMLST) web bioresource. Genetic relationships among all 670 S. equi isolates were determined at high resolution, revealing national and international transmission events that drive this endemic disease in horse populations throughout the world. Our data argue for the recognition of the international importance of strangles by the Office International des Épizooties to highlight the health, welfare and economic cost of this disease. The Pathogenwatch cgMLST web bioresource described herein is available for tailored genomic analysis of populations of S. equi and its close relative S. equi subspecies zooepidemicus that are recovered from horses and other animals, including humans, throughout the world. This article contains data hosted by Microreact.


Assuntos
Doenças dos Cavalos/microbiologia , Doenças dos Cavalos/transmissão , Infecções Estreptocócicas/veterinária , Streptococcus equi/isolamento & purificação , Animais , Feminino , Genoma Bacteriano , Cavalos , Masculino , Filogenia , Infecções Estreptocócicas/microbiologia , Infecções Estreptocócicas/transmissão , Streptococcus equi/classificação , Streptococcus equi/genética , Streptococcus equi/fisiologia
11.
Zoonoses Public Health ; 68(3): 247-262, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33522145

RESUMO

Zoonotic diseases are significant public health issues. There is an urgent need to focus our efforts on the development of strategies that prevent and control potential arthropod vector-borne pathogens. Hard ticks transmit a variety of viral, bacterial and protozoan pathogens to their vertebrate hosts. This is becoming of more concern, as anthropogenic alterations of the environment may unleash the spread of tick-borne diseases throughout the world. Developing countries that are highly dependent on the livestock economy are a hot spot for tick-borne infectious diseases. In this work, through a cross-sectional approach that included a bibliographic survey, field collection and epidemiological questionnaire, we identified five tick species that were found to parasitize equines and transmit tick-borne pathogens. Our data revealed a gap in fundamental knowledge of ticks and tick-borne infectious diseases among equine breeders and owners. This article highlights the relevant risk factors that were found and the urgent actions that are needed to prevent the wide spread of hard ticks and their associated zoonotic diseases.


Assuntos
Doenças dos Cavalos/transmissão , Ixodidae/microbiologia , Doenças Transmitidas por Carrapatos/veterinária , Animais , Estudos Transversais , Cavalos , Fatores de Risco , Doenças Transmitidas por Carrapatos/epidemiologia , Doenças Transmitidas por Carrapatos/microbiologia
12.
Med Vet Entomol ; 35(2): 177-186, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-32990991

RESUMO

The optimising and standardisation of in vitro blood feeding protocols for field-collected Culicoides species (Diptera: Ceratopogonidae) will be of essence for the comparison of the vector competencies of various populations of viruses of veterinary importance and the establishment of laboratory colonies of putative vector species. A custom-made feeding chamber to accommodate the small size of Culicoides imicola Kieffer was designed for the commercially available Hemotek® system and compared to existing membrane and cotton pledge feeding methods. High feeding rates coupled to higher mean blood meal volume than that of the existing OVI device indicated that the Hemotek system will be suitable for the feeding of field-collected Culicoides. The Hemotek system was subsequently used to identify factors that may affect feeding success in the laboratory. Evaluated factors were the source (host) and temperature of the blood meal, time of the day of feeding, the position of the blood reservoir in relation to the midges and exposure time to the blood. While only feeding orientation and the temperature of the blood source seems to significantly affect the feeding rate, all the factors did influence the volume of blood consumed.


Assuntos
Ceratopogonidae/crescimento & desenvolvimento , Técnicas In Vitro/métodos , Ração Animal , Animais , Ceratopogonidae/fisiologia , Vetores de Doenças , Comportamento Alimentar , Doenças dos Cavalos/transmissão , Cavalos , Insetos Vetores/crescimento & desenvolvimento , Ovinos , Doenças dos Ovinos/transmissão , África do Sul , Temperatura , Viroses/transmissão , Viroses/veterinária
13.
Transbound Emerg Dis ; 68(3): 1253-1262, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-32770642

RESUMO

Since November 2018, several countries in West and Central Africa have reported mortalities in donkeys and horses. Specifically, more than 66,000 horses and donkeys have succumbed to disease in Burkina Faso, Chad, Cameroon, The Gambia, Ghana, Mali, Niger, Nigeria, and Senegal. Strangles caused by Streptococcus equi subsp equi, African Horse Sickness (AHS) virus, and Equine influenza virus (EIV) were all suspected as potential causative agents. This study reports the identification of EIV in field samples collected in Niger and Senegal. Phylogenetic analysis of the hemagglutinin and neuraminidase genes revealed that the identified viruses belonged to clade 1 of the Florida sublineage and were very similar to viruses identified in Nigeria in 2019. Interestingly, they were also more similar to EIVs from recent outbreaks in South America than to those in Europe and the USA. This is one of the first reports providing detailed description and characterization of EIVs in West and Central Africa region.


Assuntos
Surtos de Doenças/veterinária , Doenças dos Cavalos/epidemiologia , Vírus da Influenza A Subtipo H3N8/genética , Infecções por Orthomyxoviridae/veterinária , Animais , Genes Virais , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Doenças dos Cavalos/transmissão , Doenças dos Cavalos/virologia , Cavalos , Vírus da Influenza A Subtipo H3N8/classificação , Neuraminidase/genética , Níger/epidemiologia , Infecções por Orthomyxoviridae/epidemiologia , Infecções por Orthomyxoviridae/transmissão , Infecções por Orthomyxoviridae/virologia , Filogenia , Senegal/epidemiologia
14.
Parasit Vectors ; 13(1): 530, 2020 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-33092640

RESUMO

BACKGROUND: Leishmania infantum is a vector-borne pathogen endemic in countries in the Mediterranean basin, including Italy. Dogs act as the primary reservoir for this parasite, but other animal species may also be infected. Low-to-moderate seroprevalence levels of infection have been reported in apparent healthy equine populations in southern Europe, reinforcing the importance of exploring those species, including horses, that act as a food source for vectors and may thus participate in the epizoological scenario of canine leishmaniosis (CanL) and zoonotic visceral leishmaniosis (ZVL). Since little is known regarding the exposure to L. infantum in horses in Italy, we assessed the seroprevalence in healthy equine populations from different CanL endemic areas. METHODS: The survey was conducted on 660 apparently healthy horses distributed throughout central and northern regions of Italy between 2016 and 2019. Blood samples were collected and the presence of anti-Leishmania antibodies (IgG) was investigated by the immunofluorescence antibody test. Information on the location and altitude of the stables, along with the horses' breed, age, sex, and reproductive status was obtained by filling in a questionnaire. This was then used for statistical analysis by generalized linear models to explore risk factors associated with seroreactivity to L. infantum. RESULTS: An average seroprevalence of 13.9% was detected for L. infantum in the equine populations investigated, with statistically significant associations between seroprevalence, geographical variables (northern vs central Italy, origin and altitude) and individual factors (i.e. age and breed morphotype). CONCLUSIONS: Our results highlight that horses are frequently exposed to L. infantum. Further prevalence surveys in horses, also using direct methods (e.g. PCR), are warranted to clarify the role of these hosts in the epidemiology of Leishmania in Italy.


Assuntos
Cavalos/parasitologia , Leishmania infantum/imunologia , Leishmaniose/veterinária , Animais , Doenças do Cão/imunologia , Doenças do Cão/parasitologia , Doenças do Cão/transmissão , Cães , Doenças dos Cavalos/imunologia , Doenças dos Cavalos/parasitologia , Doenças dos Cavalos/transmissão , Humanos , Itália/epidemiologia , Leishmaniose/imunologia , Leishmaniose/transmissão , Leishmaniose Visceral/imunologia , Leishmaniose Visceral/transmissão , Leishmaniose Visceral/veterinária , Prevalência , Estudos Retrospectivos , Estudos Soroepidemiológicos , Zoonoses
15.
Parasit Vectors ; 13(1): 413, 2020 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-32787904

RESUMO

BACKGROUND: There has been no evidence of transmission of mosquito-borne arboviruses of equine or human health concern to date in the UK. However, in recent years there have been a number of outbreaks of viral diseases spread by vectors in Europe. These events, in conjunction with increasing rates of globalisation and climate change, have led to concern over the future risk of mosquito-borne viral disease outbreaks in northern Europe and have highlighted the importance of being prepared for potential disease outbreaks. Here we assess several UK mosquito species for their potential to transmit arboviruses important for both equine and human health, as measured by the presence of viral RNA in saliva at different time points after taking an infective blood meal. RESULTS: The following wild-caught British mosquitoes were evaluated for their potential as vectors of zoonotic equine arboviruses: Ochlerotatus detritus for Venezuelan equine encephalitis virus (VEEV) and Ross River virus (RRV), and Culiseta annulata and Culex pipiens for Japanese encephalitis virus (JEV). Production of RNA in saliva was demonstrated at varying efficiencies for all mosquito-virus pairs. Ochlerotatus detritus was more permissive for production of RRV RNA in saliva than VEEV RNA. For RRV, 27.3% of mosquitoes expectorated viral RNA at 7 days post-infection when incubated at 21 °C and 50% at 24 °C. Strikingly, 72% of Cx. pipiens produced JEV RNA in saliva after 21 days at 18 °C. For some mosquito-virus pairs, infection and salivary RNA titres reduced over time, suggesting unstable infection dynamics. CONCLUSIONS: This study adds to the number of Palaearctic mosquito species that demonstrate expectoration of viral RNA, for arboviruses of importance to human and equine health. This work adds to evidence that native mosquito species should be investigated further for their potential to vector zoonotic mosquito-borne arboviral disease of equines in northern Europe. The evidence that Cx. pipiens is potentially an efficient laboratory vector of JEV at temperatures as low as 18 °C warrants further investigation, as this mosquito is abundant in cooler regions of Europe and is considered an important vector for West Nile Virus, which has a comparable transmission ecology.


Assuntos
Infecções por Arbovirus/veterinária , Arbovírus/isolamento & purificação , Mosquitos Vetores/virologia , Aedes/virologia , Animais , Infecções por Arbovirus/transmissão , Culex/virologia , Vírus da Encefalite Japonesa (Espécie)/isolamento & purificação , Vírus da Encefalite Equina Venezuelana/isolamento & purificação , Doenças dos Cavalos/transmissão , Doenças dos Cavalos/virologia , Cavalos , Humanos , Ochlerotatus/virologia , Patologia Molecular , RNA Viral/análise , Vírus do Rio Ross/isolamento & purificação , Saliva/virologia , Reino Unido/epidemiologia , Febre do Nilo Ocidental/transmissão , Zoonoses/transmissão , Zoonoses/virologia
16.
J Vector Ecol ; 45(1): 25-31, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32492265

RESUMO

Babesia caballi and Theileria equi are widely recognized as causative agents of equine pirolasmosis (EP), an acute, sub-acute, and chronic disease of equines, with relevant economic impact on horse trade worldwide. Although several studies on EP prevalence from central Italy have been published, data on ticks responsible for its transmission are still lacking. In this study, we identified a potential competent vector, investigating main features of its ecology together with EP infection rates. A two-year sampling of questing ticks was carried out for the first time in Italy in an area known for high EP prevalence in horse sera, detecting the association between Rhipicephalus bursa and causative agents of EP. Most of the positive pools harbored a single infection (91.1%); mixed infections were also detected (8.9%). The infection rate for T. equi slightly decreased among years; B. caballi showed a lower, but increasing, infection rate. Tick phenology, climate variables, and peaks of EP prevalence indicated late May and second half of June as periods with the highest risk of new infections, especially during warm and dry days.


Assuntos
Babesia/patogenicidade , Doenças dos Cavalos/parasitologia , Doenças dos Cavalos/transmissão , Ixodidae/patogenicidade , Theileria/patogenicidade , Animais , Ecologia , Cavalos , Itália , Ixodidae/parasitologia , Rhipicephalus/parasitologia , Rhipicephalus/patogenicidade
17.
Viruses ; 12(5)2020 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-32354202

RESUMO

In 2018, West Nile virus (WNV) broke out for the first time in Germany, with continuation of the epidemic in 2019, involving birds, horses and humans. To identify vectors and characterize the virus, mosquitoes were collected in both years in zoological gardens and on a horse meadow immediately following the diagnosis of disease cases in birds and horses. Mosquitoes were identified and screened for WNV by qRT-PCR, with virus-positive samples being sequenced for the viral envelope protein gene. While no positive mosquitoes were found in 2018, seven mosquito pools tested positive for WNV in 2019 in the Tierpark (Wildlife Park) Berlin. The pools consisted of Cx. pipiens biotype pipiens (n = 5), and a mixture of Cx. p. biotype pipiens and Cx. p. biotype molestus (n = 2), or hybrids of these, and were collected between 13 August and 24 September 2019. The virus strain turned out to be nearly identical to two WNV strains isolated from birds diseased in 2018 in eastern Germany. The findings represent the first demonstration of WNV in mosquitoes in Germany and include the possibility of local overwintering of the virus.


Assuntos
Culicidae/virologia , Doenças dos Cavalos/transmissão , Mosquitos Vetores/virologia , Febre do Nilo Ocidental/transmissão , Febre do Nilo Ocidental/veterinária , Vírus do Nilo Ocidental/fisiologia , Animais , Doenças das Aves/virologia , Aves/virologia , Culicidae/fisiologia , Alemanha , Doenças dos Cavalos/virologia , Cavalos , Mosquitos Vetores/fisiologia , Febre do Nilo Ocidental/virologia , Vírus do Nilo Ocidental/genética
18.
Emerg Microbes Infect ; 9(1): 651-663, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32192415

RESUMO

Equine parvovirus-hepatitis (EqPV-H) has recently been associated with cases of Theiler's disease, a form of fulminant hepatic necrosis in horses. To assess whether EqPV-H is the cause of Theiler's disease, we first demonstrated hepatotropism by PCR on tissues from acutely infected horses. We then experimentally inoculated horses with EqPV-H and 8 of 10 horses developed hepatitis. One horse showed clinical signs of liver failure. The onset of hepatitis was temporally associated with seroconversion and a decline in viremia. Liver histology and in situ hybridization showed lymphocytic infiltrates and necrotic EqPV-H-infected hepatocytes. We next investigated potential modes of transmission. Iatrogenic transmission via allogeneic stem cell therapy for orthopedic injuries was previously suggested in a case series of Theiler's disease, and was demonstrated here for the first time. Vertical transmission and mechanical vectoring by horse fly bites could not be demonstrated in this study, potentially due to limited sample size. We found EqPV-H shedding in oral and nasal secretions, and in feces. Importantly, we could demonstrate EqPV-H transmission via oral inoculation with viremic serum. Together, our findings provide additional information that EqPV-H is the likely cause of Theiler's disease and that transmission of EqPV-H occurs via both iatrogenic and natural routes.


Assuntos
Hepatite Viral Animal/virologia , Doenças dos Cavalos/virologia , Fígado/virologia , Infecções por Parvoviridae/veterinária , Parvovirus/fisiologia , Animais , Dípteros/virologia , Fezes/virologia , Feminino , Hepatite Viral Animal/patologia , Hepatite Viral Animal/transmissão , Hepatócitos/patologia , Hepatócitos/virologia , Doenças dos Cavalos/patologia , Doenças dos Cavalos/transmissão , Cavalos , Transmissão Vertical de Doenças Infecciosas , Insetos Vetores/virologia , Fígado/patologia , Linfócitos , Masculino , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/virologia , Boca/virologia , Necrose , Infecções por Parvoviridae/patologia , Infecções por Parvoviridae/transmissão , Infecções por Parvoviridae/virologia , Parvovirus/isolamento & purificação , Parvovirus/patogenicidade , Tropismo Viral , Viremia , Eliminação de Partículas Virais
19.
Methods Mol Biol ; 2123: 355-360, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32170701

RESUMO

Equine influenza virus (EIV) is a common respiratory pathogen of horses and other equids in most parts of the world. EIV are Type A influenza viruses and two subtypes are known: H3N8 and H7N7. Both are believed to have evolved from avian influenza virus ancestors. The H3N8 subtype circulates widely, but the H7N7 subtype is thought to be extinct. The clinical disease in horses, caused by either subtype, is an upper respiratory infection of varying severity depending upon the immune status of the individual animal. It is not normally life-threatening in itself except in very young foals; however it predisposes infected equids to secondary infections capable of producing life-threatening pneumonias. Vaccines are available and widely used in some horse populations, but their effectiveness is limited by antigenic drift and other factors, and vaccinated animals with subclinical infections have been responsible for introduction of EIV into susceptible populations. EIV has spread into canines.


Assuntos
Doenças dos Cavalos/virologia , Cavalos/virologia , Vírus da Influenza A Subtipo H3N8/fisiologia , Vírus da Influenza A Subtipo H7N7/fisiologia , Infecções por Orthomyxoviridae/veterinária , Infecções por Orthomyxoviridae/virologia , Animais , Doenças dos Cavalos/epidemiologia , Doenças dos Cavalos/imunologia , Doenças dos Cavalos/transmissão , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/transmissão , Vigilância da População , Vacinação/veterinária
20.
Med Vet Entomol ; 34(3): 291-294, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32107816

RESUMO

Theileria equi Mehlhorn and Schein, 1998 (Piroplasmida: Babesiidae) is an important tick-borne pathogen of horses that is highly endemic in many parts of the world, including Israel. The present study evaluated the potential roles of five hard tick species [Hyalomma excavatum Koch, 1844; Hyalomma marginatum Koch, 1844; Rhipicephalus turanicus Pomerantsev 1936; Rhipicephalus annulatus Say, 1821; Haemaphysalis parva (Neumann, 1897) (all: Ixodida: Ixodidae)], previously found to infest horses in Israel, in acting as vectors for piroplasmosis. For this, DNA was extracted from whole ticks and, when possible, from the salivary glands in each species (n = 10-59). Polymerase chain reaction amplification and sequencing of the 18S rRNA gene were used to detect T. equi in 48 of the 127 ticks (37.8%) and in 21 of the 90 extracted salivary glands (23.3%) in all five species. All but two sequences were classified as T. equi genotype A; the remaining two were classified as genotype D. The findings of this study point to Ha. parva and R. annulatus as potential novel vectors of T. equi, and suggest that parasite genotype selection occurs within the tick vector.


Assuntos
Vetores Aracnídeos/parasitologia , Doenças dos Cavalos/transmissão , Ixodidae/fisiologia , Theileria/isolamento & purificação , Theileriose/transmissão , Animais , Vetores Aracnídeos/classificação , DNA de Protozoário/análise , Feminino , Doenças dos Cavalos/parasitologia , Cavalos , Israel , Ixodidae/classificação , Masculino , RNA Ribossômico 18S/análise , Glândulas Salivares/parasitologia , Especificidade da Espécie , Theileria/classificação , Theileriose/parasitologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...